Alberta Free Tutoring And Homework Help For Math 20-1

  0

0 Tutors Online Right Now

1. Determine the value of t1 for an arithmetic sequence, where d = 6 and S12 = 432. 

2. Determine t7 of a geometric sequence, where r = 5 and t1 = 2 

6 years ago

Answered By Leonardo F

First, let's write the formula for the sum of the n terms of an arithmetic sequence (S):

 $S=\frac{\left(t_1+t_n\right)n}{2}$S=(t1+tn)n2  

We know that: S=432;n=12. The generic term formula is:

 $t_n=t_1+\left(n-1\right)d$tn=t1+(n1)d 

Hence, substituting in the sum formula:

 $S=\frac{\left(t_1+t_1+\left(n-1\right)d\right)n}{2}$S=(t1+t1+(n1)d)n2  

Since d=6:

 $432=\frac{\left(t_1+t_1+\left(12-1\right)6\right)12}{2}$432=(t1+t1+(121)6)122  

 $432=\frac{\left(2t_1+11\left(6\right)\right)12}{2}$432=(2t1+11(6))122  

Solving for t1:

 $t_1=3$t1=3 


6 years ago

Answered By Leonardo F

Question 2) The generic term formula for a geometric sequence is:

 $t_n=t_1.r^{n-1}$tn=t1.rn1 

Since r=5 and t1=2, we have:

 $t_7=2\times5^{7-1}=2\times5^6=31250$t7=2×571=2×56=31250