A baseball is thrown with a velocity of 27.0m/s 35 degrees. What are the components of the balls initial velocity? How high and how far will it travel?
5 years ago
Answered By Majid B
components of the initial velocity:
$v_{ix}=v_i\times\cos\theta_i=27\times\cos35=22.12$vix=vi×cosθi=27×cos35=22.12 m/s
$v_{iy}=v_i\times\sin\theta_i=27\times\sin35=15.49$viy=vi×sinθi=27×sin35=15.49 m/s
height of travel:
$v_{fy}^2-v_{iy}^2=2gd_y$vƒy2−viy2=2gdy => $d_y=\frac{\left(v_{fy}^2-v_{iy}^2\right)}{2g}=\frac{\left(0^2-15.49^2\right)}{2\left(-9.81\right)}=12.23$dy=(vƒy2−viy2)2g=(02−15.492)2(−9.81)=12.23 m
distance of travel:
$g=\frac{\left(v_{fy}-v_{iy}\right)}{t}$g=(vƒy−viy)t => $t=\frac{\left(v_{fy}-v_{iy}\right)}{g}=\frac{\left(0-15.49\right)}{-9.81}=1.579$t=(vƒy−viy)g=(0−15.49)−9.81=1.579 s => $T=2\times t=2\times1.579=3.158$T=2×t=2×1.579=3.158 s
$d_x=v_{ix}\times T=22.12\times3.158=69.85$dx=vix×T=22.12×3.158=69.85 m
5 years ago
Answered By Majid B
components of the initial velocity:
$v_{ix}=v_i\times\cos\theta_i=27\times\cos35=22.12$vix=vi×cosθi=27×cos35=22.12 m/s
$v_{iy}=v_i\times\sin\theta_i=27\times\sin35=15.49$viy=vi×sinθi=27×sin35=15.49 m/s
height of travel:
$v_{fy}^2-v_{iy}^2=2gd_y$vƒ y2−viy2=2gdy => $d_y=\frac{\left(v_{fy}^2-v_{iy}^2\right)}{2g}=\frac{\left(0^2-15.49^2\right)}{2\left(-9.81\right)}=12.23$dy=(vƒ y2−viy2)2g =(02−15.492)2(−9.81) =12.23 m
distance of travel:
$g=\frac{\left(v_{fy}-v_{iy}\right)}{t}$g=(vƒ y−viy)t => $t=\frac{\left(v_{fy}-v_{iy}\right)}{g}=\frac{\left(0-15.49\right)}{-9.81}=1.579$t=(vƒ y−viy)g =(0−15.49)−9.81 =1.579 s => $T=2\times t=2\times1.579=3.158$T=2×t=2×1.579=3.158 s
$d_x=v_{ix}\times T=22.12\times3.158=69.85$dx=vix×T=22.12×3.158=69.85 m