A mass of 55.0kg is 225m above the ground with a velocity of 36.0 m/s. Use conservation of energy to calculate is velocity when it reaches a height of 115m above the ground. Ignore the effects of air resistance.
5 years ago
Decreament in P.E.= Increament in K.E.
mg(h1 - h2) = m(V22- V12)
9.8 ( 225-115) = V22 - 362
so,V22= 2374
V2= 48.72
mg(h1 - h2) =(1/2) m(V22- V12)
9.8 ( 225-115) = (1/2)*(V22 - 362)
so,V22= 3452
V2= 58.75
Sorry for previous solution
$E_i=E_f$Ei=Eƒ => $E_{ki}+E_{pi}=E_{kf}+E_{pf}$Eki+Epi=Ekƒ +Epƒ => $\frac{1}{2}mv_i^2+mgh_i=\frac{1}{2}mv_f^2+mgh_f$12 mvi2+mghi=12 mvƒ 2+mghƒ => $\frac{1}{2}v_i^2+gh_i=\frac{1}{2}v_f^2+gh_f$12 vi2+ghi=12 vƒ 2+ghƒ => $v_f^2=v_i^2+2g\left(h_i-hf\right)$vƒ 2=vi2+2g(hi−hƒ ) => $v_f=\sqrt{v_i^2+2g\left(h_i-hf\right)}$vƒ =√vi2+2g(hi−hƒ ) => $v_f=\sqrt{36^2+2\times9.81\left(225-115\right)}$vƒ =√362+2×9.81(225−115)
$v_f=58.77$vƒ =58.77 m/s
5 years ago
Answered By Harsh P
Decreament in P.E.= Increament in K.E.
mg(h1 - h2) = m(V22- V12)
9.8 ( 225-115) = V22 - 362
so,V22= 2374
V2= 48.72
5 years ago
Answered By Harsh P
Decreament in P.E.= Increament in K.E.
mg(h1 - h2) =(1/2) m(V22- V12)
9.8 ( 225-115) = (1/2)*(V22 - 362)
so,V22= 3452
V2= 58.75
Sorry for previous solution
5 years ago
Answered By Majid B
$E_i=E_f$Ei=Eƒ => $E_{ki}+E_{pi}=E_{kf}+E_{pf}$Eki+Epi=Ekƒ +Epƒ => $\frac{1}{2}mv_i^2+mgh_i=\frac{1}{2}mv_f^2+mgh_f$12 mvi2+mghi=12 mvƒ 2+mghƒ => $\frac{1}{2}v_i^2+gh_i=\frac{1}{2}v_f^2+gh_f$12 vi2+ghi=12 vƒ 2+ghƒ => $v_f^2=v_i^2+2g\left(h_i-hf\right)$vƒ 2=vi2+2g(hi−hƒ ) => $v_f=\sqrt{v_i^2+2g\left(h_i-hf\right)}$vƒ =√vi2+2g(hi−hƒ ) => $v_f=\sqrt{36^2+2\times9.81\left(225-115\right)}$vƒ =√362+2×9.81(225−115)
$v_f=58.77$vƒ =58.77 m/s