Hello, can someone really quick help me with this question. Pleaseeee i dont understand.
The pH of a solution is given by pH = -log(H+), where (H+) is the hydrogen ion concentration in moles per liter. The average pH of blood is 7.4 in a human. Humans will die if the pH of their blood goes below 7.0 or above 7.8. What is the difference in hydrogen ion concentration between the allowable pHs? Solve algebraically
4 years ago
Answered By Majid B
$pH_1=-\log\left[H^+\right]_1=7.8$pH1=−log[H+]1=7.8 => $\log\left[H^+\right]_1=-7.8$log[H+]1=−7.8 => $\left[H^+\right]_1=10^{-7.8}=1.585\times10^{-8}\left(\frac{mol}{L}\right)$[H+]1=10−7.8=1.585×10−8(molL )
$pH_2=-\log\left[H^+\right]_2=7.0$pH2=−log[H+]2=7.0 => $\log\left[H^+\right]_2=-7.0$log[H+]2=−7.0 => $\left[H^+\right]_2=10^{-7.0}=10\times10^{-8}\left(\frac{mol}{L}\right)$[H+]2=10−7.0=10×10−8(molL )
$\left[H^+\right]_2-\left[H^+\right]_1=10^{-7.0}-10^{-7.8}=10\times10^{-8}-1.585\times10^{-8}=8.415\times10^{-8}\left(\frac{mol}{L}\right)$[H+]2−[H+]1=10−7.0−10−7.8=10×10−8−1.585×10−8=8.415×10−8(molL )