Alberta Free Tutoring And Homework Help For Math 30-1

  0

0 Tutors Online Right Now

i need help with these two question... please , its really confusing.

1.identity tan^2x(cos^2x+1)+cos^2x=sec^2x

A.state any non permissible values

B.the possible identity numerically.

C.possible identity graphically 

d. prove the identity 

 

2. the possible identity cos 2x = 2 sinxcosx

A.state any non-permissible values

B.possible identity numerically

C.possible identity graphically

d prove identity 

4 years ago

Answered By Safian Q

1a. Recall that  $sec^2x=\frac{1}{cos^2x}$sec2x=1cos2x  . We can't let  $cos^2x=0$cos2x=0 because  $\frac{1}{0}=undefined$10 =undeƒ ined . For what values does    $cos^2x=0$cos2x=0? Think about where just $cosx=0$cosx=0 , which is at  $\frac{1\pi}{2},\frac{3\pi}{2},\frac{5\pi}{2}...$1π2 ,3π2 ,5π2 ... You can write this as  $\frac{n\pi}{2}$nπ2  where the value of  $n$n is an odd number. Those are the non permissible values of the identiy. 

1b. I assume here we just plug in a number for $x$x to check if both sides equal. Let's plug $0$0 for $x$x on the lefthand side first:

 $tan^20\left(cos^20+1\right)+cos^20=0\left(1+1\right)+1^2=1$tan20(cos20+1)+cos20=0(1+1)+12=1 

Now let's do the righthand side:

 $sec^20=\frac{1}{cos^20}=\frac{1}{1^2}=1$sec20=1cos20 =112 =1 

so you can see they're equal.

1c. Graph (they're overlapping eachother so which shows they're equal):

1d. Proof:

 $tan^2x\left(cos^2x+1\right)+cos^2x=sec^2x$tan2x(cos2x+1)+cos2x=sec2x 

 $\frac{sin^2x}{cos^2x}\left(cos^2x+1\right)+cos^2x=\frac{1}{cos^2x}$sin2xcos2x (cos2x+1)+cos2x=1cos2x  , using definition of tan and secant. 

 $sin^2x+\frac{sin^2x}{cos^2x}+cos^2x=\frac{1}{cos^2x}$sin2x+sin2xcos2x +cos2x=1cos2x   , multiplying the brackets

$1+\frac{sin^2x}{cos^2x}=\frac{1}{cos^2x}$1+sin2xcos2x =1cos2x  , using  $sin^2x+cos^2x=1$sin2x+cos2x=1 

 $\frac{\left(cos^2x+sin^2x\right)}{cos^2x}=\frac{1}{cos^2x}$(cos2x+sin2x)cos2x =1cos2x  , rearranging terms/denominator

 $\frac{1}{cos^2x}=\frac{1}{cos^2x}$1cos2x =1cos2x , using  $sin^2x+cos^2x=1$sin2x+cos2x=1 again

Attached Graph: