4. integrate: $\int2\left(x-1\right)^{\frac{1}{2}}dx=\frac{4\left(x-1\right)^{\frac{3}{2}}}{3}+c$∫2(x−1)12dx=4(x−1)323+c [hint use substitution]
5. solution is: $\int\frac{x}{\sqrt{x-1}}=\left(x\right)\left(2\left(x-1\right)^{\frac{1}{2}}\right)-\frac{4\left(x-1\right)^{\frac{3}{2}}}{3}+c$∫x√x−1=(x)(2(x−1)12)−4(x−1)323+c
4 years ago
Answered By Majid B
$\int\frac{x}{\left(x-1\right)^{\frac{1}{2}}}dx$∫x(x−1)12 dx $=$= $\int u.dv=u.v-\int v.du$∫u.dv=u.v−∫v.du
$x=u$x=u => $dx=du$dx=du
$\frac{dx}{\left(x-1\right)^{\frac{1}{2}}}=dv$dx(x−1)12 =dv => $2\left(x-1\right)^{\frac{1}{2}}=v$2(x−1)12 =v
$\int\frac{x}{\left(x-1\right)^{\frac{1}{2}}}dx=x.\left(2\left(x-1\right)^{\frac{1}{2}}\right)-\int2\left(x-1\right)^{\frac{1}{2}}.dx=2x\left(x-1\right)^{\frac{1}{2}}-2\left(\frac{\left(x-1\right)^{\frac{3}{2}}}{\frac{3}{2}}\right)+C=2x\left(x-1\right)^{\frac{1}{2}}-\frac{4}{3}\left(x-1\right)^{\frac{3}{2}}+C=\frac{1}{3}\left(x-1\right)^{\frac{1}{2}}\left(6x-4x+4\right)+C=\frac{1}{3}\left(x-1\right)^{\frac{1}{2}}\left(2x+4\right)+C=\frac{2}{3}\left(x-1\right)^{\frac{1}{2}}\left(x+2\right)+C$∫x(x−1)12 dx=x.(2(x−1)12 )−∫2(x−1)12 .dx=2x(x−1)12 −2((x−1)32 32 )+C=2x(x−1)12 −43 (x−1)32 +C=13 (x−1)12 (6x−4x+4)+C=13 (x−1)12 (2x+4)+C=23 (x−1)12 (x+2)+C
4 years ago
Answered By Michael Z
1. Let u=x and dv= $\frac{1}{\sqrt{x-1}}$1√x−1 , then du=dx and v= $2\left(x-1\right)^{\frac{1}{2}}$2(x−1)12 [hint use substitution]
2.integration by parts formula is $\int udv=uv-\int vdu$∫udv=uv−∫vdu
3. substitute: $\int\frac{x}{\sqrt{x-1}}=\left(x\right)\left(2\left(x-1\right)^{\frac{1}{2}}\right)-\int2\left(x-1\right)^{\frac{1}{2}}dx$∫x√x−1 =(x)(2(x−1)12 )−∫2(x−1)12 dx
4. integrate: $\int2\left(x-1\right)^{\frac{1}{2}}dx=\frac{4\left(x-1\right)^{\frac{3}{2}}}{3}+c$∫2(x−1)12 dx=4(x−1)32 3 +c [hint use substitution]
5. solution is: $\int\frac{x}{\sqrt{x-1}}=\left(x\right)\left(2\left(x-1\right)^{\frac{1}{2}}\right)-\frac{4\left(x-1\right)^{\frac{3}{2}}}{3}+c$∫x√x−1 =(x)(2(x−1)12 )−4(x−1)32 3 +c