question 1 helppp please ive speed 1 hour trying to figure this out.. thanks
a.solve 6cosθ sin θ - 2 cos θ = 0,0< θ < 2π
b. give the general solution to 6cosθ sin θ - 2 cos θ = 0.
4 years ago
Part A -
Assume # = Theta
6 Cos# Sin# - 2 Cos# = 0;
So, 2Cos# (3Sin# - 1) = 0;
So, dividing both sides by 2cos#. we get
3Sin# - 1 = 0;
So, Sin# = 1/3;
Therefore # = 19.47*
a) $0<\theta<2\pi$0<θ<2π
$6\left(\cos\theta\right)\left(\sin\theta\right)-2\left(\cos\theta\right)=0$6(cosθ)(sinθ)−2(cosθ)=0 => $2\left(\cos\theta\right)\left(3\left(\sin\theta\right)-1\right)=0$2(cosθ)(3(sinθ)−1)=0
case1: $2\left(\cos\theta\right)=0$2(cosθ)=0 => $\cos\theta=0$cosθ=0 => $\theta=\frac{\pi}{2},\frac{3\pi}{2}$θ=π2 ,3π2
case2: $3\left(\sin\theta\right)-1=0$3(sinθ)−1=0 => $\sin\theta=\frac{1}{3}$sinθ=13 => $\theta=0.340\left(rad\right),2.802\left(rad\right)$θ=0.340(rad),2.802(rad)
b) General solution
case1: $\cos\theta=0$cosθ=0 => $\theta=\left(2n+1\right)\left(\frac{\pi}{2}\right)$θ=(2n+1)(π2 ) , $n\text{∈}I=\left\{0,\pm1,\pm2,...\right\}$n∈I={0,±1,±2,...}
case2: $\sin\theta=\frac{1}{3}$sinθ=13 => $\theta=2n\pi+0.340$θ=2nπ+0.340 , $\theta=2n\pi+2.802$θ=2nπ+2.802 , $n\text{∈}I=\left\{0,\pm1,\pm2,...\right\}$n∈I={0,±1,±2,...}
4 years ago
Answered By Harsh S
Part A -
Assume # = Theta
6 Cos# Sin# - 2 Cos# = 0;
So, 2Cos# (3Sin# - 1) = 0;
So, dividing both sides by 2cos#. we get
3Sin# - 1 = 0;
So, Sin# = 1/3;
Therefore # = 19.47*
4 years ago
Answered By Majid B
a) $0<\theta<2\pi$0<θ<2π
$6\left(\cos\theta\right)\left(\sin\theta\right)-2\left(\cos\theta\right)=0$6(cosθ)(sinθ)−2(cosθ)=0 => $2\left(\cos\theta\right)\left(3\left(\sin\theta\right)-1\right)=0$2(cosθ)(3(sinθ)−1)=0
case1: $2\left(\cos\theta\right)=0$2(cosθ)=0 => $\cos\theta=0$cosθ=0 => $\theta=\frac{\pi}{2},\frac{3\pi}{2}$θ=π2 ,3π2
case2: $3\left(\sin\theta\right)-1=0$3(sinθ)−1=0 => $\sin\theta=\frac{1}{3}$sinθ=13 => $\theta=0.340\left(rad\right),2.802\left(rad\right)$θ=0.340(rad),2.802(rad)
b) General solution
case1: $\cos\theta=0$cosθ=0 => $\theta=\left(2n+1\right)\left(\frac{\pi}{2}\right)$θ=(2n+1)(π2 ) , $n\text{∈}I=\left\{0,\pm1,\pm2,...\right\}$n∈I={0,±1,±2,...}
case2: $\sin\theta=\frac{1}{3}$sinθ=13 => $\theta=2n\pi+0.340$θ=2nπ+0.340 , $\theta=2n\pi+2.802$θ=2nπ+2.802 , $n\text{∈}I=\left\{0,\pm1,\pm2,...\right\}$n∈I={0,±1,±2,...}