Show that P(x)/x-a = Q(x)+ R/x-a can be rearranged to P(x)= Q(x)(x-a)+R
5 years ago
P(x)/(x-a)= (Q(x)(x-a)+R)/(x-a)
multiplying by (x-a) on both sides,
P(x)=Q(x)(x-a)+R; a not equal to 0
multiplying both sides by ( $x-a$x−a )
the equation becomes
$\frac{P\left(x\right)}{\left(x-a\right)}\left(x-a\right)=Q\left(x\right)\left(x-a\right)+\frac{R}{\left(x-a\right)}\left(x-a\right)$P(x)(x−a) (x−a)=Q(x)(x−a)+R(x−a) (x−a)
since $\frac{\left(x-a\right)}{\left(x-a\right)}=1$(x−a)(x−a) =1
so the result is
$P\left(x\right)=Q\left(x\right)\left(x-a\right)+R$P(x)=Q(x)(x−a)+R
Note: the result is true iff $x\ne a$x≠a otherwise we will me multiplying the equation by 0.
5 years ago
Answered By Arko G
P(x)/(x-a)= (Q(x)(x-a)+R)/(x-a)
multiplying by (x-a) on both sides,
P(x)=Q(x)(x-a)+R; a not equal to 0
5 years ago
Answered By Chirag K
multiplying both sides by ( $x-a$x−a )
the equation becomes
$\frac{P\left(x\right)}{\left(x-a\right)}\left(x-a\right)=Q\left(x\right)\left(x-a\right)+\frac{R}{\left(x-a\right)}\left(x-a\right)$P(x)(x−a) (x−a)=Q(x)(x−a)+R(x−a) (x−a)
since $\frac{\left(x-a\right)}{\left(x-a\right)}=1$(x−a)(x−a) =1
so the result is
$P\left(x\right)=Q\left(x\right)\left(x-a\right)+R$P(x)=Q(x)(x−a)+R
Note: the result is true iff $x\ne a$x≠a otherwise we will me multiplying the equation by 0.