The expression 8logk(5√k)p can be written as which of the following? 40p p8logk(k/5) (8/5)p or (8p)/5
6 years ago
This is a question involving the properties of logarithms. If we recall the following exponent property:
$\log_aN^b=b\times\log_aN$logaNb=b×logaN
The exponent inside the log becomes a multiplier. Another property we have to remember is the fracional exponent and radical:
$N^{\frac{a}{b}}=\sqrt[b]{N^a}$Nab =b√Na
Applying these two properties in this exercise:
$8\times\log_k\left[\left(\sqrt[5]{k}\right)^p\right]=8\times\log_k\left[\left(k^{\frac{1}{5}}\right)^p\right]=8\times\log_k\left(k^{\frac{p}{5}}\right)$8×logk[(5√k)p]=8×logk[(k15 )p]=8×logk(kp5 )
Now, applying the exponent property:
$8\times\log_k\left(k^{\frac{p}{5}}\right)=8\times\left(\frac{p}{5}\right)\times\log_kk$8×logk(kp5 )=8×(p5 )×logkk
Since $\log_kk=1$logkk=1 , we have the following expression:
$\log_k\left[\left(\sqrt[5]{k}\right)^p\right]=8\times\left(\frac{p}{5}\right)=\frac{8p}{5}$logk[(5√k)p]=8×(p5 )=8p5
Hence, the logarithm expression can be simplified to $\frac{8p}{5}$8p5 .
6 years ago
Answered By Leonardo F
This is a question involving the properties of logarithms. If we recall the following exponent property:
$\log_aN^b=b\times\log_aN$logaNb=b×logaN
The exponent inside the log becomes a multiplier. Another property we have to remember is the fracional exponent and radical:
$N^{\frac{a}{b}}=\sqrt[b]{N^a}$Nab =b√Na
Applying these two properties in this exercise:
$8\times\log_k\left[\left(\sqrt[5]{k}\right)^p\right]=8\times\log_k\left[\left(k^{\frac{1}{5}}\right)^p\right]=8\times\log_k\left(k^{\frac{p}{5}}\right)$8×logk[(5√k)p]=8×logk[(k15 )p]=8×logk(kp5 )
Now, applying the exponent property:
$8\times\log_k\left(k^{\frac{p}{5}}\right)=8\times\left(\frac{p}{5}\right)\times\log_kk$8×logk(kp5 )=8×(p5 )×logkk
Since $\log_kk=1$logkk=1 , we have the following expression:
$\log_k\left[\left(\sqrt[5]{k}\right)^p\right]=8\times\left(\frac{p}{5}\right)=\frac{8p}{5}$logk[(5√k)p]=8×(p5 )=8p5
Hence, the logarithm expression can be simplified to $\frac{8p}{5}$8p5 .