Ontario Free Tutoring And Homework Help For Math 12 University - Advanced Functions

  0

0 Tutors Online Right Now

d(t)= 36/1+0.3(1.3)^t, t is greater than and equal to 0. How long does it take (to the nearest tenth) for the snowball to melt to to half its original diameter?

6 years ago

Answered By Sanam A

At t=T=?,  d =1/2

 

 $\frac{1}{2}=\frac{36}{1+0.3\left(1.3\right)^T}$12 =361+0.3(1.3)T  

 

Multiply both sides by 2

 

 $1=\frac{72}{1+0.3\left(1.3\right)^T}$1=721+0.3(1.3)T  

 

Multiply both sides by  $1+0.3\left(1.3\right)^T$1+0.3(1.3)T 

 

 $1+0.3\left(1.3\right)^T=72$1+0.3(1.3)T=72 

 

 $0.3\left(1.3\right)^T=72-1$0.3(1.3)T=721 

 

 $\left(1.3\right)^T=\frac{71}{0.3}$(1.3)T=710.3  

 

 $\ln\left(1.3\right)^T=\ln\left(\frac{71}{0.3}\right)$ln(1.3)T=ln(710.3 ) 

 

 $T\cdot\ln\left(1.3\right)=\ln\left(\frac{71}{0.3}\right)$T·ln(1.3)=ln(710.3 ) 

 

 $T=\frac{\ln\left(\frac{71}{0.3}\right)}{\ln\left(1.3\right)}$T=ln(710.3 )ln(1.3)  

 

 $T=20.8s$T=20.8s 

 

 

 

 


6 years ago

Answered By Sanam A

Note: The above solution is based on initial diameter of 1 unit

However, for t=0 the initial diameter is 27.69 units

So, with this diameter meter and the above approach the answer should be 6.4s